」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 使用 Python 掌握機器學習:基礎與關鍵概念

使用 Python 掌握機器學習:基礎與關鍵概念

發佈於2024-11-04
瀏覽:133

In today's era of Artificial Intelligence (AI), scaling businesses and streamlining workflows has never been easier or more accessible. AI and machine learning equip companies to make informed decisions, giving them a superpower to predict the future with just a few lines of code. Before taking a significant risk, wouldn't knowing if it's worth it be beneficial? Have you ever wondered how these AIs and machine learning models are trained to make such precise predictions?
In this article, we will explore, hands-on, how to create a machine-learning model that can make predictions from our input data. Join me on this journey as we delve into these principles together.
This is the first part of a series on mastering machine learning, focusing on the foundations and key concepts. In the second part, we will dive deeper into advanced techniques and real-world applications.

Introduction:

Machine Learning (ML) essentially means training a model to solve problems. It involves feeding large amounts of data (input-data) to a model, enabling it to learn and discover patterns from the data. Interestingly, the model's accuracy depends solely on the quantity and quality of data it is fed.

Machine learning extends beyond making predictions for enterprises; it powers innovations like self-driving cars, robotics, and much more. With continuous advancements in ML, there's no telling what incredible achievements lie ahead - it's simply amazing, right?

There's no contest as to why Python remains one of the most sought-after programming languages for machine learning. Its vast libraries, such as Scikit-Learn and Pandas, and its easy-to-read syntax make it ideal for ML tasks. Python offers a simplified and well-structured environment that allows developers to maximize their potential. As an open-source programming language, it benefits from contributions worldwide, making it even more suitable and advantageous for data science and machine learning.

Fundamentals Of Machine Learning

Machine Learning (ML) is a vast and complex field that requires years of continuous learning and practice. While it's impossible to cover everything in this article, let's look into some important fundamentals of machine learning, specifically:

  • Supervised Machine Learning From its name, we can deduce that supervised machine learning involves some form of monitoring or structure. It entails mapping one function to another; that is, providing labeled data input (i) to the machine, explaining what should be done (algorithms), and waiting for its output (j). Through this mapping, the machine learns to predict the output (j) whenever an input (i) is fed into it. The result will always remain output (j). Supervised ML can further be classified into:

Regression: When a variable input (i) is supplied as data to train a machine, it produces a continuous numerical output (j). For example, a regression algorithm can be used to predict the price of an item based on its size and other features.

Classification: This algorithm makes predictions based on grouping by determining certain attributes that make up the group. For example, predicting whether a product review is positive, negative, or neutral.

  • Unsupervised Machine Learning Unsupervised Machine Learning tackles unlabeled or unmonitored data. Unlike supervised learning, where models are trained on labeled data, unsupervised learning algorithms identify patterns and relationships in data without prior knowledge of the outcomes. For example, grouping customers based on their purchasing behavior.

Setting Up Your Environment

When setting up your environment to create your first model, it's essential to understand some basic steps in ML and familiarize yourself with the libraries and tools we will explore in this article.

Steps in Machine Learning:

  1. Import the Data: Gather the data you need for your analysis.
  2. Clean the Data: Ensure your data is in good and complete shape by handling missing values and correcting inconsistencies.
  3. Split the Data: Divide the data into training and test sets.
  4. Create a Model: Choose your preferred algorithm to analyze the data and build your model.
  5. Train the Model: Use the training set to teach your model.
  6. Make Predictions: Use the test set to make predictions with your trained model.
  7. Evaluate and Improve: Assess the model's performance and refine it based on the outputs.

Common Libraries and Tools:

  • NumPy: Known for providing multidimensional arrays, NumPy is fundamental for numerical computations.

  • Pandas: A data analysis library that offers data frames (two-dimensional data structures similar to Excel spreadsheets) with rows and columns.

  • Matplotlib: Matplotlib is a two-dimensional plotting library for creating graphs and plots.

  • Scikit-Learn: The most popular machine learning library, providing all common algorithms like decision trees, neural networks, and more.

Recommended Development Environment:

Standard IDEs such as VS Code or terminals may not be ideal when creating a model due to the difficulty in inspecting data while writing code. For our learning purposes, the recommended environment is Jupyter Notebook, which provides an interactive platform to write and execute code, visualize data, and document the process simultaneously.

Step-by-Step Setup:

Download Anaconda:
Anaconda is a popular distribution of Python and R for scientific computing and data science. It includes the Jupyter Notebook and other essential tools.

Download Anaconda from this link.
Install Anaconda:
Follow the installation instructions based on your operating system (Windows, macOS, or Linux).
After the installation is complete, you will have access to the Anaconda Navigator, which is a graphical interface for managing your Anaconda packages, environments, and notebooks.
Launching Jupyter Notebook:

Mastering Machine Learning with Python: Foundations and Key Concepts

Open the Anaconda Navigator
In the Navigator, click on the "Environments" tab.
Select the "base (root)" environment, and then click "Open with Terminal" or "Open Terminal" (the exact wording may vary depending on the OS).
In the terminal window that opens, type the command jupyter notebook and press Enter.

Mastering Machine Learning with Python: Foundations and Key Concepts

This command will launch the Jupyter Notebook server and automatically open a new tab in your default web browser, displaying the Jupyter Notebook interface.

Using Jupyter Notebook:

The browser window will show a file directory where you can navigate to your project folder or create new notebooks.
Click "New" and select "Python 3" (or the appropriate kernel) to create a new Jupyter Notebook.
You can now start writing and executing your code in the cells of the notebook. The interface allows you to document your code, visualize data, and explore datasets interactively.

Mastering Machine Learning with Python: Foundations and Key Concepts

Building Your First Machine Learning Model

In building your first model, we have to take cognizance of the steps in Machine Learning as discussed earlier, which are:

  1. Import the Data
  2. Clean the Data
  3. Split the Data
  4. Create a Model
  5. Train the Model
  6. Make Predictions
  7. Evaluate and Improve

Now, let's assume a scenario involving an online bookstore where users sign up and provide their necessary information such as name, age, and gender. Based on their profile, we aim to recommend various books they are likely to buy and build a model that helps boost sales.

First, we need to feed the model with sample data from existing users. The model will learn patterns from this data to make predictions. When a new user signs up, we can tell the model, "Hey, we have a new user with this profile. What kind of book are they likely to be interested in?" The model will then recommend, for instance, a history or a romance novel, and based on that, we can make personalized suggestions to the user.

Let's break down the process step-by-step:

  1. Import the Data: Load the dataset containing user profiles and their book preferences.
  2. Clean the Data: Handle missing values, correct inconsistencies, and prepare the data for analysis.
  3. Split the Data: Divide the dataset into training and testing sets to evaluate the model's performance.
  4. Create a Model: Choose a suitable machine learning algorithm to build the recommendation model.
  5. Train the Model: Train the model using the training data to learn the patterns and relationships within the data.
  6. Make Predictions: Use the trained model to predict book preferences for new users based on their profiles.
  7. Evaluate and Improve: Assess the model's accuracy using the testing data and refine it to improve its performance.

By following these steps, you will be able to build a machine-learning model that effectively recommends books to users, enhancing their experience and boosting sales for the online bookstore. You can gain access to the datasets used in this tutorial here.

Let's walk through a sample code snippet to illustrate the process of testing the accuracy of the model:

  • Import the necessary libraries:
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

We start by importing the essential libraries. pandas is used for data manipulation and analysis, while DecisionTreeClassifier, train_test_split, and accuracy_score are from Scikit-learn, a popular machine learning library.

  • Load the dataset:
book_data = pd.read_csv('book_Data.csv')
Read the dataset from a `CSV file` into a pandas DataFrame.
  • Prepare the data:
X = book_data.drop(columns=['Genre'])
y = book_data['Genre']

Create a feature matrix X by dropping the 'Genre' column from the dataset and a target vector y containing the 'Genre' column.

  • Split the data:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Split the data into training and testing sets with 80% for training and 20% for testing.

  • Initialize and train the model:
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

Initialize the DecisionTreeClassifier model and train it using the training data.

  • Make predictions and evaluate the model:
predictions = model.predict(X_test)
score = accuracy_score(y_test, predictions)
print(score)

Make predictions on the test data and calculate the accuracy of the model by comparing the test labels to the predictions. Finally, print the accuracy score to the console.

In this example, we start by importing the essential libraries. Pandas is used for data manipulation and analysis, while DecisionTreeClassifier, train_test_split, and accuracy_score are from Scikit-learn, a popular machine learning library. We then read the dataset from a CSV file into a pandas DataFrame, prepare the data by creating a feature matrix X and a target vector y, split the data into training and testing sets, initialize and train the DecisionTreeClassifier model, make predictions on the test data, and calculate the accuracy of the model by comparing the test labels to the predictions.

Depending on the data you're using, the results will vary. For instance, in the output below, the accuracy score displayed is 0.7, but it may show 0.5 when the code is run again with a different dataset. The accuracy score will vary, a higher score indicates a more accurate model.
Output:

Mastering Machine Learning with Python: Foundations and Key Concepts

Data Preprocessing:

Now that you've successfully created your model, it's important to note that the kind of data used to train your model is crucial to the accuracy and reliability of your predictions. In Mastering Data Analysis: Unveiling the Power of Fairness and Bias in Information, I discussed extensively the importance of data cleaning and ensuring data fairness. Depending on what you intend to do with your model, it is essential to consider if your data is fair and free of any bias. Data cleaning is a very vital part of machine learning, ensuring that your model is trained on accurate, unbiased data. Some of these ethical considerations are:

  1. Removing Outliers: Ensure that the data does not contain extreme values that could skew the model's predictions.

  2. Handling Missing Values: Address any missing data points to avoid inaccurate predictions.

  3. Standardizing Data: Make sure the data is in a consistent format, allowing the model to interpret it correctly.

  4. Balancing the Dataset: Ensure that your dataset represents all categories fairly to avoid bias in predictions.

  5. Ensuring Data Fairness: Check for any biases in your data that could lead to unfair predictions and take steps to mitigate them.

By addressing these ethical considerations, you ensure that your model is not only accurate but also fair and reliable, providing meaningful predictions.

Conclusion:

Machine learning is a powerful tool that can transform data into valuable insights and predictions. In this article, we explored the fundamentals of machine learning, focusing on supervised and unsupervised learning, and demonstrated how to set up your environment and build a simple machine learning model using Python and its libraries. By following these steps and experimenting with different algorithms and datasets, you can unlock the potential of machine learning to solve complex problems and make data-driven decisions.

In the next part of this series, we will dive deeper into advanced techniques and real-world applications of machine learning, exploring topics such as feature engineering, model evaluation, and optimization. Stay tuned for more insights and practical examples to enhance your machine-learning journey.

Additional Resources:

  • Programming with Mosh

  • Machine Learning Tutorial geeksforgeeks

版本聲明 本文轉載於:https://dev.to/eztosin/mastering-machine-learning-with-python-foundations-and-key-concepts-54di?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • Java的Map.Entry和SimpleEntry如何簡化鍵值對管理?
    Java的Map.Entry和SimpleEntry如何簡化鍵值對管理?
    的綜合集合:在Java中介紹Java的Map.entry和SimpleEntry和SimpleEntry和SimpleEntry和SimpleEntry和SimpleEntry和SimpleEntry和SimpleEntry和SimpleEntry apry and Map。 地圖。它具有兩個通用...
    程式設計 發佈於2025-06-09
  • 如何使用FormData()處理多個文件上傳?
    如何使用FormData()處理多個文件上傳?
    )處理多個文件輸入時,通常需要處理多個文件上傳時,通常是必要的。 The fd.append("fileToUpload[]", files[x]); method can be used for this purpose, allowing you to send multi...
    程式設計 發佈於2025-06-09
  • Go語言垃圾回收如何處理切片內存?
    Go語言垃圾回收如何處理切片內存?
    Garbage Collection in Go Slices: A Detailed AnalysisIn Go, a slice is a dynamic array that references an underlying array.使用切片時,了解垃圾收集行為至關重要,以避免潛在的內存洩...
    程式設計 發佈於2025-06-09
  • 對象擬合:IE和Edge中的封面失敗,如何修復?
    對象擬合:IE和Edge中的封面失敗,如何修復?
    To resolve this issue, we employ a clever CSS solution that solves the problem:position: absolute;top: 50%;left: 50%;transform: translate(-50%, -50%)...
    程式設計 發佈於2025-06-09
  • Java中假喚醒真的會發生嗎?
    Java中假喚醒真的會發生嗎?
    在Java中的浪費喚醒:真實性或神話? 在Java同步中偽裝喚醒的概念已經是討論的主題。儘管存在這種行為的潛力,但問題仍然存在:它們實際上是在實踐中發生的嗎? Linux的喚醒機制根據Wikipedia關於偽造喚醒的文章,linux實現了pthread_cond_wait()功能的Linux實現,...
    程式設計 發佈於2025-06-09
  • 如何使用Python的請求和假用戶代理繞過網站塊?
    如何使用Python的請求和假用戶代理繞過網站塊?
    如何使用Python的請求模擬瀏覽器行為,以及偽造的用戶代理提供了一個用戶 - 代理標頭一個有效方法是提供有效的用戶式header,以提供有效的用戶 - 設置,該標題可以通過browser和Acterner Systems the equestersystermery和操作系統。通過模仿像Chro...
    程式設計 發佈於2025-06-09
  • Spark DataFrame添加常量列的妙招
    Spark DataFrame添加常量列的妙招
    在Spark Dataframe ,將常數列添加到Spark DataFrame,該列具有適用於所有行的任意值的Spark DataFrame,可以通過多種方式實現。使用文字值(SPARK 1.3)在嘗試提供直接值時,用於此問題時,旨在為此目的的column方法可能會導致錯誤。 df.withCo...
    程式設計 發佈於2025-06-09
  • 如何正確使用與PDO參數的查詢一樣?
    如何正確使用與PDO參數的查詢一樣?
    在pdo 中使用類似QUERIES在PDO中的Queries時,您可能會遇到類似疑問中描述的問題:此查詢也可能不會返回結果,即使$ var1和$ var2包含有效的搜索詞。錯誤在於不正確包含%符號。 通過將變量包含在$ params數組中的%符號中,您確保將%字符正確替換到查詢中。沒有此修改,PD...
    程式設計 發佈於2025-06-09
  • 為什麼我的CSS背景圖像出現?
    為什麼我的CSS背景圖像出現?
    故障排除:CSS背景圖像未出現 ,您的背景圖像儘管遵循教程說明,但您的背景圖像仍未加載。圖像和样式表位於相同的目錄中,但背景仍然是空白的白色帆布。 而不是不棄用的,您已經使用了CSS樣式: bockent {背景:封閉圖像文件名:背景圖:url(nickcage.jpg); 如果您的html,cs...
    程式設計 發佈於2025-06-09
  • 如何在Java字符串中有效替換多個子字符串?
    如何在Java字符串中有效替換多個子字符串?
    在java 中有效地替換多個substring,需要在需要替換一個字符串中的多個substring的情況下,很容易求助於重複應用字符串的刺激力量。 However, this can be inefficient for large strings or when working with nu...
    程式設計 發佈於2025-06-09
  • 如何實時捕獲和流媒體以進行聊天機器人命令執行?
    如何實時捕獲和流媒體以進行聊天機器人命令執行?
    在開發能夠執行命令的chatbots的領域中,實時從命令執行實時捕獲Stdout,一個常見的需求是能夠檢索和顯示標準輸出(stdout)在cath cath cant cant cant cant cant cant cant cant interfaces in Chate cant inter...
    程式設計 發佈於2025-06-09
  • 如何在無序集合中為元組實現通用哈希功能?
    如何在無序集合中為元組實現通用哈希功能?
    在未訂購的集合中的元素要糾正此問題,一種方法是手動為特定元組類型定義哈希函數,例如: template template template 。 struct std :: hash { size_t operator()(std :: tuple const&tuple)const {...
    程式設計 發佈於2025-06-09
  • 如何高效地在一個事務中插入數據到多個MySQL表?
    如何高效地在一個事務中插入數據到多個MySQL表?
    mySQL插入到多個表中,該數據可能會產生意外的結果。雖然似乎有多個查詢可以解決問題,但將從用戶表的自動信息ID與配置文件表的手動用戶ID相關聯提出了挑戰。 使用Transactions和last_insert_id() 插入用戶(用戶名,密碼)值('test','tes...
    程式設計 發佈於2025-06-09
  • 如何從PHP中的Unicode字符串中有效地產生對URL友好的sl。
    如何從PHP中的Unicode字符串中有效地產生對URL友好的sl。
    為有效的slug生成首先,該函數用指定的分隔符替換所有非字母或數字字符。此步驟可確保slug遵守URL慣例。隨後,它採用ICONV函數將文本簡化為us-ascii兼容格式,從而允許更廣泛的字符集合兼容性。 接下來,該函數使用正則表達式刪除了不需要的字符,例如特殊字符和空格。此步驟可確保slug僅包...
    程式設計 發佈於2025-06-09
  • 找到最大計數時,如何解決mySQL中的“組函數\”錯誤的“無效使用”?
    找到最大計數時,如何解決mySQL中的“組函數\”錯誤的“無效使用”?
    如何在mySQL中使用mySql 檢索最大計數,您可能會遇到一個問題,您可能會在嘗試使用以下命令:理解錯誤正確找到由名稱列分組的值的最大計數,請使用以下修改後的查詢: 計數(*)為c 來自EMP1 按名稱組 c desc訂購 限制1 查詢說明 select語句提取名稱列和每個名稱...
    程式設計 發佈於2025-06-09

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3